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Abstract 25 

We systematically explore the ability of the Community Atmospheric Model 26 

Version 5 (CAM5) to simulate the Madden-Julian Oscillation (MJO), through an analysis 27 

of MJO metrics calculated from an 1100-member perturbed parameter ensemble of 5-28 

year simulations with observed sea-surface temperatures. Parameters from the deep 29 

convection scheme make the greatest contribution to variance in MJO simulation quality 30 

with a much smaller contribution from parameters in the large-scale cloud, shallow 31 

convection and boundary layer turbulence schemes. Improved MJO variability results 32 

from a larger lateral entrainment rate and a shorter convective adjustment timescale. 33 

Improved variability also results from reductions to the drying tendencies of deep 34 

convection that were achieved by a smaller auto-conversion of cloud to rain water and a 35 

larger evaporation of convective precipitation. Unfortunately, simulations with an 36 

improved MJO also have a significant negative impact on the climatological values of 37 

low-level cloud and absorbed shortwave radiation, suggesting that structural in addition 38 

to parametric modifications to CAM5’s parameterization suite are needed in order to 39 

simultaneously well simulate the MJO and mean-state climate.  40 
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1.    Introduction 41 

Since its discovery and initial description by Madden and Julian [1971], the 42 

Madden-Julian Oscillation (MJO) has been shown to be a dominant mode of Tropical 43 

intra-seasonal variability with worldwide impacts [Zhang, 2005; Lau and Waliser, 2012]. 44 

The MJO is characterized by an eastward-propagating, equatorially-trapped baroclinic 45 

oscillation in the tropical wind field and is associated with precipitation anomalies that 46 

propagate from the western Indian Ocean to the western Pacific ocean with a 47 

characteristic oscillation period of 40-50 days. Unlike other types of large-scale 48 

equatorial wave modes, the existence of the MJO is not predicted by simple shallow 49 

water theory [Wheeler and Kiladis, 1999]. Perhaps as a result, there has not yet been 50 

established a comprehensive theory for the interactions of convective systems and large-51 

scale dynamics that create the MJO. Consequently, improved MJO understanding relies 52 

on empirical studies utilizing satellite and field-campaign observations and models 53 

ranging from general circulation models (GCMs) to cloud resolving models [Zhang et al., 54 

2013]. 55 

Despite the lack of a comprehensive theory, there is a significant understanding of 56 

the necessary ingredients for the MJO. Most prominent are the role of moisture anomalies 57 

and the sensitivity of convection to tropospheric moisture [Bladé and Hartmann, 1993; 58 

Sperber, 2003; Benedict and Randall, 2007; Maloney, 2009; Del Genio, 2011; Del Genio 59 

et al., 2012; Randall, 2013; Sobel and Maloney, 2013]. During the suppressed phase of 60 

the MJO (to the east of the convective center), convection depth is limited by a dry free 61 

troposphere, but shallow cumuli moisten the atmosphere at the level at which they 62 

detrain. This moistening potentially allows later convective events to rise through a more 63 
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humid atmosphere and thus penetrate somewhat higher, further recharging tropospheric 64 

moisture, until the column is sufficiently humid to trigger the deep convection that 65 

characterizes the disturbed MJO phase. The deep convection organizes and discharges the 66 

built-up moisture through precipitation and compensating subsidence drying, returning 67 

the atmosphere to the suppressed MJO phase. A complementary understanding involves 68 

the variations of the diabatic heating with MJO phase [Lin et al., 2004; Zhang and Mu, 69 

2005; Fu and Wang, 2009; Seo and Wang, 2010; Zhang et al., 2010; Khouider et al., 70 

2011; Lappen and Schumacher, 2012]. Previous authors have variously emphasized the 71 

role of low-level heating in the build-up phase or the high-level heating associated with 72 

stratiform precipitation during the active phase of convection, or its combined effect of a 73 

east-to-west tilt in the level of maximum diabatic heating.  74 

Of key interest in this study is the representation of the MJO in GCMs. While an 75 

unconventional GCM in which the conventional convective parameterization has been 76 

replaced by a two dimensional cloud resolving model can convincingly simulate the 77 

space-time structure of the MJO [Thayer-Calder and Randall, 2009; Stan et al., 2010], 78 

the typical conventional GCM simulates an MJO that is too weak, if present at all [Slingo 79 

et al., 1996; Lin et al., 2006; Kim et al., 2009; Jiang et al., 2014]. However, even with 80 

conventional GCMs, there have been some encouraging results in individual models. In 81 

particular, improved simulation results from inhibiting the deep convection either with 82 

more restrictive closure assumptions [Sperber et al., 2005; Zhang and Mu, 2005; Lin et 83 

al., 2008; Benedict et al., 2013] or by increasing the lateral entrainment in convective 84 

updrafts which enhances the sensitivity of the convection scheme to free tropospheric 85 

moisture [Tokioka et al., 1988; Bechtold et al., 2008; Del Genio et al., 2012; Kim et al., 86 
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2011; Zhou et al., 2012; Hirons et al., 2012]. Given moisture’s central role, it is not 87 

surprising that some improvements can also be found by altering the moistening 88 

tendencies of convection, for example by increasing the amount of evaporation of 89 

convective rain [Maloney, 2009; Del Genio et al., 2012]. While model resolution does 90 

not consistently impact a simulated MJO [Crueger et al., 2012; Holloway et al., 2013], an 91 

interactive ocean usually improves the MJO simulation [Waliser et al., 1999; Sperber et 92 

al., 2005; Woolnough et al., 2007; Jiang et al., 2014]. However, the lack of an interactive 93 

ocean is not viewed as the primary cause of poor simulations in atmosphere-only models, 94 

as many coupled ocean-atmosphere models have a poor MJO [Lin et al., 2006]. 95 

In this study, we examine the parametric sensitivity of the MJO simulation by the 96 

Community Atmosphere Model Version 5 (CAM5) [Neale et al., 2011].  While this 97 

version of the model includes an entraining plume in its deep convection scheme [Neale 98 

et al., 2008] that improved the MJO in Version 4 of the coupled-ocean atmosphere model 99 

[Subramanian et al., 2011, Zhou et al., 2012], the MJO is poorly simulated in 100 

atmosphere-only versions of CAM4  [Lappen and Schumacher, 2012] and CAM5 [see 101 

figures below and Jiang et al., 2014]. Given the poor simulation of the MJO by CAM5 102 

and the history of sometimes successful tinkering with the CAM parameterizations, the 103 

question arises: Are there any choices of parameterization settings that could enable a 104 

good simulation of the MJO? If so, would the improved simulation be consistent with 105 

current understanding of the physical processes underlying the MJO? 106 

To that end, we examine the MJO characteristics in a large ensemble of perturbed 107 

parameter simulations of CAM5. Because the ensemble perturbs 22 uncertain parameters 108 

across all major moist physical parameterizations, it gives one the opportunity to more 109 
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fully explore the multi-dimensional parameter space, thus addressing the problem that 110 

most model developers perform sensitivity tests in an ad-hoc one-at-a-time manner. In 111 

the case of CAM5, perturbed parameter ensembles have been previously used to study 112 

the sensitivity of several precipitation characteristics including the mean and 113 

convective/stratiform ratio [Yang et al., 2013] as well as the diurnal cycle and 114 

precipitation intensity distribution [Qian et al., 2014]. These studies demonstrate that in 115 

some cases, altering parameter values can improve model simulations in a significant 116 

way; whether or not this is true for the simulated MJO is the focus of this paper. 117 

The structure of the paper is as follows: Section 2 describes the model, perturbed-118 

parameter-ensemble, and observations used. Section 3 describes the metrics that quantify 119 

MJO simulation quality, applies them to the ensemble, and presents an analysis of their 120 

parametric sensitivity. In Section 4, another model simulation is described and additional 121 

model diagnostics performed to test whether the suggestions from the sensitivity analysis 122 

actually do improve the simulated MJO. Also presented in this section is a description of 123 

changes to the mean-state climate that result from this attempt to improve the MJO. The 124 

paper ends in Section 5 with a discussion of the major conclusions. 125 

2.    The model, ensemble, and observations used 126 

2.1.  CAM5 127 

The GCM used here is the Community Atmosphere Model Version 5 (CAM5) 128 

[Neale et al., 2011], specifically version cam5_1_02. All simulations use the finite 129 

volume dynamical core with a horizontal resolution of 1.9° x 2.5° latitude by longitude 130 

and 30 vertical levels. Table 1 contains the descriptions of the parameterizations used in 131 
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CAM5. Of note is that the deep convection parameterization is based upon Zhang-132 

McFarlane [Zhang and McFarlane, 1995], but modified to include an entraining plume 133 

and cumulus momentum transport [Neale et al., 2008].  134 

2.2.  Perturbed parameter ensemble 135 

The CAM5 perturbed-parameter ensemble used here was performed for another 136 

project and is fully described elsewhere (see specifically the C-Ensemble in Qian et al. 137 

[2014]). In brief, all members of the ensemble were CAM5 integrations of 5 years length 138 

using monthly mean observed sea-surface temperatures from 2000 to 2004. The ensemble 139 

consists of 1100 members (actually five separate ensembles of 220 simulations each) that 140 

were generated with Latin Hyper-Cube sampling for the values of 22 parameters that 141 

span CAM5’s convection (shallow and deep), cloud, and turbulence parameterizations. 142 

All parameters are varied simultaneously with each parameter having a uniform 143 

distribution of values over all ensemble members. Table 2 shows the default value and 144 

ranges of the parameters varied. Parameter uncertainty ranges were determined by expert 145 

solicitation based upon physical considerations. Selected parameters of the deep 146 

convection scheme are described in more detail in Appendix A; the rest of the parameters 147 

have extended descriptions in the CAM5 scientific description [Neale et al. 2011]. 148 

2.3. Observations and analysis data 149 

The following precipitation datasets are used to characterize the observed MJO: 150 

the Global Precipitation Climatology Project (GPCP) [Adler et al., 2003], the Tropical 151 

Rainfall Measuring Mission (TRMM) [Huffman et al., 2007], and (as a precipitation 152 

surrogate) outgoing longwave radiation (OLR) estimates from Liebmann and Smith 153 



8 
 

 

[1996]. Daily estimates for these products are available for the years 1996 to 2009 for 154 

GPCP, 2000 to 2009 for TRMM, and 1980 to 2011 for the OLR estimate. For large-scale 155 

winds associated with the MJO, we use re-analysis data for the years 1980 to 2011 from 156 

the European Centre for Medium-Range Weather Forecasts (ERA-Interim) [Dee et al. 157 

2011]. 158 

For characterization of model climate, we additionally use satellite estimates of 159 

radiation from the Clouds and Earth’s Radiation Energy Systems (CERES) Energy 160 

Balanced And Filled (EBAF) dataset [Loeb et al., 2009] and oceanic cloud liquid water 161 

path from the National Aeronautics and Space Administration Water Vapor Project 162 

(NVAP) [Randel et al., 1996]. 163 

3.    An analysis of the MJO sensitivity in the ensemble  164 

3.1.  Metrics for the MJO and their variability in the ensemble 165 

The comprehensive diagnostics described in CLIVAR [2009] were reviewed to 166 

determine appropriate measures to characterize the MJO in the perturbed parameter 167 

ensemble, subject to the constraint that precipitation was the only sub-monthly output 168 

available. Three diagnostics that appear to be powerful at discriminating the MJO were 169 

selected and for each the information was further reduced into a single number or 170 

‘metric’.  The analysis was restricted to the boreal winter months of November to April, 171 

the months with the most pronounced MJO activity. 172 

The first two metrics can best be described by reference to Figure 1, which shows 173 

time lag – longitude plots of correlation coefficients between 10°S - 10°N averaged intra-174 

seasonal TRMM precipitation anomalies with intra-seasonal precipitation for a base 175 
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region in the Indian Ocean region (Figure 1a, 70°E -90°E, 5°S - 5°N) and the Western 176 

Pacific Ocean (Figure 1b, 130°E - 150°E, 5°S to 5°N). Intra-seasonal precipitation was 177 

calculated with a band-pass filter of 20 to 90 days. These plots show the progression of 178 

MJO precipitation eastward from the Indian Ocean into the West Pacific Ocean. 179 

Corresponding figures were constructed for each ensemble member and the first metric 180 

(called patCorACIO) was set equal to the pattern correlation coefficient over the plotted 181 

domain (30°E - 180°E, -20 - +20 days) between the model result and the observed using 182 

the Indian Ocean base region (Figure 1a). The second metric (called patCorACWP) was 183 

created in an identical fashion but with using the Western Pacific Ocean base region.  For 184 

both metrics, a perfect model result would be indicated by a metric with value of +1.0 185 

(perfect correlation). 186 

The third metric is described by reference to Figure 2 which displays the 187 

November to April wavenumber frequency spectra of 10°S - 10°N averaged TRMM 188 

precipitation. The computation was carried out as described by CLIVAR [2009]. The 189 

actual metric (called wePwrRatio) is the ratio of power in Eastward to Westward 190 

propagating waves. The power is calculated for frequencies with periods between 20 and 191 

90 days and zonal wavenumbers 1 to 5. In Figure 2, this ratio is computed from the 192 

average power over the two outlined boxes. For TRMM, wePwrRatio has a value of 2.18. 193 

These metrics are complementary since patCorACIO and patCorACWP capture 194 

the MJO phase speed and geographical characteristics whereas wePwrRatio provides a 195 

measure of MJO magnitude and scale. 196 

Figure 3 displays the joint histogram of patCorACIO and wePwrRatio calculated 197 

from all 1100 members of the ensemble as well as from a separate integration of CAM5 198 
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when run with the default parameter settings. Figure 3a displays the results of metrics 199 

calculated using the GPCP precipitation estimate and Figure 3b presents the results using 200 

TRMM precipitation.  Although the exact values of wePwrRatio and patCorACIO do 201 

vary with the choice of precipitation datasets, the general impression remains the same. 202 

Namely, the default model and the majority of models in the ensemble do not perform 203 

particularly well using these metrics, with a relatively low pattern correlation (typically 204 

less than 0.5) and no preference for eastward propagating low-frequency waves unlike 205 

the observations. Despite this, there are a few dozen or so ensemble members that do 206 

perform relatively well with pattern correlations in excess of 0.7 and East-West power 207 

ratios approaching 2. Results using patCorACWP instead patCorACIO are similar. 208 

3.2.  The parametric sensitivity of the MJO metrics and a Bayesian parameter 209 

estimation 210 

Given the wide range of model performance across the ensemble, it may be 211 

possible to identify which parameters influence the simulated metrics and which 212 

parameters are immaterial to the simulation of the MJO.  A further goal would be to 213 

estimate the optimal value for each parameter given the observed value of the metrics. 214 

These goals are accomplished using statistical techniques described in Appendix B that 215 

specialize in the analysis of variance and parameter estimation. 216 

Figure 4 summarizes the relative importance of the perturbed parameters in 217 

explaining variance in the simulated patCorACIO, patCorACWP and wePwrRatio. 218 

Larger values of feature scores, roughly analogous to the fraction of variance explained, 219 

indicate greater impact of a parameter. For all metrics, parameters from the deep 220 

convection scheme dominate the ensemble variance with perhaps surprising little 221 
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influence from parameters from other parameterization schemes. The most important 222 

parameters are the timescale for deep convection (zmconv_tau) and the mass entrainment 223 

rate (zmconv_dmpdz), with the parameters controlling precipitation and evaporation 224 

efficiency (zmconv_c0_ocn and zmconv_ke, respectively) and the magnitude of the 225 

downdraft mass-flux (zmconv_alfa) also being important, particularly for patCorACIO 226 

and patCorACWP.  227 

Recommended values for these parameters can be discerned from Figure 5 which 228 

shows the marginal parameter posterior distributions for zmconv_tau, zmconv_dmpdz, 229 

zmconv_c0_ocn, zmconv_ke and zmconv_alfa over their normalized range from 0 230 

(minimum value) to 1 (maximum value). The red vertical lines indicate the normalized 231 

values that correspond to CAM5’s default parameter settings. Larger values indicate 232 

increased likelihood of that parameter value leading to a simulation that would improve 233 

the agreement of with the observed values of patCorACIO, patCorACWP and 234 

wePwrRatio. The figure suggests than an improved simulation would result from setting 235 

zmconv_c0_ocn, zmconv_tau and zmconv_alfa to their minimum values and 236 

zmconv_dmpdz and zmconv_ke to their maximum values. Because the most likely 237 

parameter values fall at the boundaries of the parameter sampling ranges, it suggests that 238 

true optimum values of these parameters may lie outside the sampled ranges of the 239 

parameters. Because the parameter ranges are set by expert judgment regarding their 240 

physical plausibility, an optimal value outside the specified ranges may indicate structural 241 

deficiencies in the physical parameterizations of the climate model [Neelin et al., 2010]. 242 
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4.    Can the MJO be improved, and if so, what are the 243 

consequences for the mean climate? 244 

4.1. The MJO of a targeted simulation 245 

The sensitivity analysis presented in the previous section provides guidance as to 246 

which parameters the simulated MJO metrics are sensitive to and recommends suggested 247 

values. However, because no single run in the ensemble changed all of the parameters in 248 

the recommend way and all runs contain changes to other parameters that were at best 249 

insignificant to the MJO, it remains to be demonstrated that this guidance would actually 250 

improve the simulated MJO. Furthermore, model optimization of these three metrics may 251 

not produce a realistic MJO when one considers MJO characteristics other than those 252 

measured by the metrics.  253 

Thus, a targeted new simulation (called UQ-Rec) was performed in which the 254 

only parameters changed were those in the deep convection parameterization suggested 255 

by the sensitivity analysis to have an influence on the simulated MJO (see Appendix A 256 

for their description). Specifically, the rate at which liquid is converted into rain inside 257 

the updraft over ocean (zmconv_c0_ocn) is set to the lower limit from Table 2, a 258 

reduction by a factor of 45 with respect to the default. Second, the evaporation of 259 

convective precipitation was increased by raising the efficiency parameter (zmconv_ke) 260 

by a factor of 10, setting its value equal to the upper limit from Table 2. Both changes 261 

reduce the drying tendencies of deep convection, effectively lowering its precipitation 262 

efficiency. Third, the convective time scale (zmconv_tau) was set to its lower limit from 263 

Table 2, effectively doubling the cumulus mass-flux for a given large-scale condition. No 264 
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changes were made to the other two parameters (zmconv_dmpdz and zmconv_alfa), since 265 

Figure 5 suggests that little additional gain would result, given that the likelihood of the 266 

default setting is nearly as large as the maximum likelihood in the tested range. 267 

In order to increase the statistical robustness, a ten-year simulation for UQ-Rec 268 

covering the years 2000-2009 was performed. As a point of comparison, two additional 269 

ten-year simulations were also performed for the model with the default parameter 270 

settings (called Default) and the single member of the perturbed parameter ensemble that 271 

scored best in terms of the MJO metrics (called PPE-Best). While all 22 parameters in 272 

PPE-Best differ in their settings from their defaults, PPE-Best shares similarities to UQ-273 

Rec including a factor of 15 reduction in zmconv_c0_ocn relative to the default CAM5, a 274 

halving of zmconv_tau, and a factor of 2.5 increase in zmconv_ke. 275 

The analysis of the simulated MJO in these runs begins with an examination of 276 

the diagnostics upon which the MJO metrics are based. Figure 6 shows the lag-longitude 277 

plots of boreal winter intra-seasonal precipitation anomalies (color shading) for the 278 

TRMM observations and the three model runs correlated with Indian ocean intra-seasonal 279 

precipitation. Overlain on these plots are the correlation coefficients for the 850 hPa 280 

zonal wind anomalies with Indian ocean intra-seasonal precipitation. The UQ-Rec 281 

appears to have better eastward propagation for both the OLR and 850 hPa wind 282 

anomalies, especially over the Indian Ocean and west Pacific. In the other two 283 

simulations, the OLR tends to show more of a standing oscillation over the Indian Ocean, 284 

with pronounced westward propagation of 850 hPa wind anomalies.  285 

The improved eastward propagation in the UQ-Rec simulation is also confirmed 286 

in Figure 7, which displays the wavenumber – frequency spectra of tropical precipitation 287 
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from the model simulations calculated in the same way as that of the observations shown 288 

in Figure 2. Here there are striking differences in magnitude of intra-seasonal variance 289 

(consider the different color scales) with the PPE-Best and particularly UQ-Rec 290 

simulations having considerably larger amounts of intra-seasonal variance relative to that 291 

in the Default simulation. The increased variances are accompanied by significant 292 

increases in the ratio of Eastward to Westward propagating waves with the value of the 293 

wePwrRatio in the UQ-Rec simulation (2.01) lying within the range of the observed 294 

estimates. However, accompanying these improvements are some persistent deficiencies 295 

including a tendency for the maximum power to occur at too low a frequency (in both 296 

eastward and westward propagating variance) and for variance to peak at wave number 297 

two without extending to wave number one as in observations. These behaviors have also 298 

been found in other models [Kim et al. 2009]. 299 

Extending the analysis to other MJO diagnostics (often following CLIVAR 300 

[2009]), Figure 8 shows the first multivariate combined Empirical Orthogonal Function 301 

(CEOF) of the 20 – 90 day band-passed OLR, 850 and 200 hPa zonal winds averaged 302 

from 15°S to 15°N for the boreal cool season for the observations and models calculated 303 

as in Wheeler and Hendon [2004]. While all simulations exhibit the out-of-phase 304 

relationship between 850 hPa and 200 hPa zonal winds as seen in the observations, they 305 

all struggle to exhibit the observed quadrature relationship for OLR with winds in the 306 

Indian ocean. In terms of the fraction of variance explained, the UQ-Rec simulation has 307 

the highest fraction of variance explained (18.8%) which while still less than observed 308 

(22.9%) is noticeably higher than that of the Default (14.9%). Results are similar for the 309 

second CEOF (not shown), which explains a similar amount of variance as CEOF 1 (in 310 
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both the models and observations). Here too, the relative superiority of the UQ-Rec 311 

simulation is illustrated by the values of the correlation coefficient and lag time with the 312 

maximum correlation between the principal component (PC) time-series corresponding to 313 

CEOF 1 and CEOF 2. In particular, the values from the UQ-Rec simulation (0.76 and 9 314 

days) are closer to the observed values (0.78 and 10 days) than are the values from the 315 

Default simulation (0.61 and 9 days). This indicates an improved temporal coherency for 316 

the eastward propagating signal. 317 

MJO amplitude can also be gauged from Figure 9, which shows power-spectral 318 

density plots of the CEOF 1 (Figure 8) projected onto the unfiltered data (with only the 319 

seasonal cycle removed). Of all the simulations, the UQ-Rec has by far the largest 320 

amplitude across all frequencies although it must be noted its amplitude is still less than 321 

observed. Furthermore, all simulations have too much amplitude in the lowest frequency 322 

near 100 days with the frequency of the peak power shifted by 20 - 30 days from the 323 

observations.  324 

For a qualitative overview of the structure of the MJO simulations, Figure 10 is a 325 

composite of November to April band-passed OLR as a function of MJO phase for the 326 

observations and the three simulations. The composites are based on PC12 + PC22 > 1 in 327 

each octant of the PC1 vs. PC2 phase space, where PC1 and PC2 are the unit standard 328 

deviation principal components corresponding to CEOF 1 and CEOF 2. The Default 329 

simulation has an almost no evidence of a definitive MJO structure. In contrast, the UQ-330 

Rec simulation has a fairly good correspondence with observations with its weakest point 331 

being in phase 5 when it substantially underestimates the signal over the Maritime 332 

Continent. Curiously, the PPE-Best simulation has poor features at the initial and final 333 
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phases but does rather well at phase 5. The improved result over the land of the maritime 334 

continent in the PPE-Best simulation may be because zmconv_c0_land is a factor of 4 335 

less than in the Default and UQ-Rec simulations. 336 

Figure 11 is a similar composite but for the 850 hPa zonal wind. While the 337 

general character of the Default simulation appears reasonable, its amplitude is smaller 338 

than the observations. In contrast, the amplitudes of the fluctuations are larger (and 339 

perhaps a bit too large relative to observations) for the PPE-Best and UQ-Rec 340 

simulations. The generally better performance of the simulations for the 850 hPa zonal 341 

wind relative to OLR is symptomatic of the fact that the large-scale dynamics is easier to 342 

simulate relative to that of the precipitation [Crueger et al., 2012]. 343 

From the literature cited in the introduction, one would expect that the eastward 344 

moving convection center would be proceeded by low-level moistening and heating with 345 

upper level moistening and mid to lower level clearing in its wake. Figure 12 presents 346 

longitude-pressure cross-sections of specific humidity anomalies from 15°S to 15°N 347 

linearly regressed onto the 20 – 90 day band-passed precipitation at 120°E. The re-348 

analysis shows significant low-level positive anomalies to the east of 120°E with mid-349 

level drying to the west. The UQ-Rec simulation has a pattern in many respects similar to 350 

the re-analysis including positive moisture anomalies beneath 900 hPa to the east of 351 

120°E, and negative moisture anomalies to the west. The other model simulations fail to 352 

show the positive low-level moisture anomalies to the east.  353 

Figure 13 is the same as Figure 12 except for displaying the anomalies in moist 354 

diabatic heating (convective plus stratiform). The estimate from the ERA-Interim for this 355 

can be found in Figure 10a of Benedict et al. [2013]. Of the three model simulations, the 356 
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UQ-Rec simulation has the most pronounced low-level heating to the east of 120°E and is 357 

most close to the re-analysis. 358 

4.2 What are the consequences for the mean model climate state? 359 

Figures 6 to 13 indicate that modifying a few parameters of the deep convection 360 

scheme as done in the UQ-Rec model configuration improves the simulated MJO. 361 

However, these parameter settings may not be acceptable for the model if the simulation 362 

of the mean climate were seriously degraded. In terms of mean precipitation, the UQ-Rec 363 

simulation performs nearly as well as the Default with a 40% smaller bias and 2.5% 364 

increase in root-mean-square error (Table 3). Relative to the Default, the UQ-Rec 365 

simulation has increased precipitation on the equator in the Western Pacific and in the 366 

South Pacific Convergence Zone with reduced precipitation in the Northern Hemisphere 367 

Tropics which is an improvement (not shown). In the UQ-Rec simulation, the fraction of 368 

precipitation produced from the stratiform or large-scale cloud parameterization increases 369 

to 11% from 6% in the Default simulation. This is less than the 30% stratiform 370 

precipitation fraction that was thought to be important for the MJO simulation of two 371 

other models [Fu and Wang, 2009; Seo and Wang, 2010]. 372 

However, in terms of the climatological radiation field, a very strong bias in 373 

excess of 20 W m-2 has been introduced into the global mean shortwave radiation cloud 374 

radiative effect through the modification of perturbed parameters in both the UQ-Rec and 375 

PPE-Best simulations (Table 3). A bias of this magnitude is unacceptable for a climate 376 

model. This increase in reflected shortwave radiation is due to a very large increase in 377 

column integrated liquid water path (LWP), with values in the UQ-Rec and PPE-Best 378 

simulations that are 4 times that observed. A single perturbation experiment (called 379 
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OAT38) changing only zmconv_c0_ocn suggests that the decrease in this parameter is 380 

responsible for most of this increase in LWP and reflected shortwave radiation. 381 

Physically, by lowering the rate at which convective cloud condensate is converted to 382 

precipitation, more convective condensate is left as cloud water that can reflect shortwave 383 

radiation. A related consequence is an increase in lower tropospheric moisture (Figure 384 

14). Compared to the Default simulation and the re-analysis, all modified simulations 385 

exhibit a considerably moister lower troposphere with typical increases of 2 g kg-1 386 

particularly in the layer between 500 and 800 hPa. These are the same levels that 387 

contribute to the very strong increase in LWP. 388 

It is clear if one were to use the guidance from this study to improve CAM5’s 389 

MJO, one would need to eliminate these biases in clouds and reflected shortwave 390 

radiation. Given that a bias of this magnitude is likely outside of the range that could be 391 

eliminated with further parameter modifications (i.e. routine model tuning), structural 392 

modifications to CAM5’s parameterization suite would be needed. 393 

5.    Discussion 394 

The motivating question for this study was: Are there any choices of CAM5’s 395 

parameterization settings that could enable a good simulation of the MJO? The answer 396 

seems to be a qualified yes. By modifying 5 key parameters in the deep convection 397 

parameterization based upon guidance from a very large perturbed-parameter ensemble, 398 

the simulation of the MJO is improved, particularly in terms of the amplitude of the intra-399 

seasonal variability and the simulation of low-level moisture and heating anomalies to the 400 

east of the convective center. However, the improved MJO still has noticeable 401 

deficiencies, particularly with an oscillation period that is too long. This would seem to 402 
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be a qualified success for the perturbed-parameter methodology; namely, metrics for the 403 

MJO were defined a priori, a sensitivity analysis then found the parameters that influence 404 

the metrics, and a posteori simulation demonstrated that guidance from the sensitivity 405 

analysis was correct. Note that partial success was not guaranteed from the start; two 406 

other possibilities were that no perturbations to the parameters chosen would have 407 

successfully improved the MJO, or that the analysis techniques could have missed 408 

possible ways to improve the MJO. However, given the systematic nature of the UQ 409 

exploration, we are confident that we have found the only ways to improve the MJO in 410 

CAM5 based on modification to the 22 parameters considered. 411 

The major drawback of this approach is that fixing one aspect of the simulation 412 

may introduce problems into other aspects of the model’s simulation. While the 413 

simulation of climatological precipitation is acceptable, the mean amount of absorbed 414 

shortwave radiation is unacceptably reduced, primarily as a result of the one parameter 415 

(zmconv_c0_ocn) that is most effective at improving the MJO. It should also be noted 416 

that the tunings suggested here are in apparent disagreement with those suggested from 417 

other perturbed-parameter studies with CAM5 to improve other aspects of the simulated 418 

precipitation field. In particular, to improve the ratio of stratiform to convective scale 419 

precipitation, Yang et al. [2013] suggest that lengthening the convective adjustment time 420 

scale (zmconv_tau) and increasing the initial downdraft mass-flux (zmconv_alfa) relative 421 

to CAM5’s default settings; guidance which is opposite to that found here for improving 422 

the MJO. Qian et al. [2014] also suggest that the adjustment time scale (zmconv_tau) 423 

should be lengthened to increase the value of the 95th percentile of hourly mean 424 

precipitation distribution. 425 
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In terms of the physics of convection and its relationship to the MJO, the present 426 

study confirms the now well-known sensitivity of tropical variability to the lateral 427 

entrainment rate of the deep convection scheme. The present study also confirms the 428 

previously known importance of processes that affect the ultimate drying tendencies of 429 

the deep convection parameterization, including both the rate at which convective 430 

precipitation evaporates and the representation of cloud microphysics in the 431 

parameterized convective updrafts. But there are differences too with prior work. In 432 

particular, the simulation of the MJO is improved by shortening the adjustment time scale 433 

for deep convection for which we do not have a physical explanation. Also somewhat 434 

surprising is the relative insensitivity to parameters from processes other than the deep 435 

convection scheme. If the buildup of moisture in advance of the MJO deep convective 436 

phase is so important, why weren’t the simulations of the MJO sensitive to the mixing 437 

(uwshcu_rkm and uwshcu_rpen) or microphysical (uwshcu_criqc and uwshcu_kevp) 438 

parameters in the shallow convection scheme [Cai et al., 2014]? Likewise, if the radiative 439 

heating associated with clouds is an important amplifier on the variability of tropical 440 

convection, why weren’t the simulations of the MJO sensitive to changes in the key ice 441 

microphysical parameters (cldwatmi_dcs, cldwatmi_ai, and cldwatmi_as) that affect the 442 

amount of ice in high-level stratiform anvils associated with convection? Two possible 443 

answers to these questions are (a) that these parameters were not perturbed over a wide 444 

enough range to simulate a noticeable effect or (b) it may be that shallow convection and 445 

radiative heating (at least in CAM5, if not nature) are not that important to the MJO. A 446 

further caution on the guidance from perturbed parameter ensembles is that the 447 
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recommend parameter values may improve the simulation of the phenomenon for the 448 

wrong physical reason [Hannah and Maloney, 2014].  449 

Clearly discretion should be exercised as to how and when it is suitable to use 450 

parameter perturbations to improve the simulation of selected phenomena. Perhaps the 451 

knowledge gained in this paper might be useable in a qualitative way in future tuning 452 

exercises with CAM when other significant model changes in either in resolution or 453 

model physics have occurred. For example, knowledge of which parameters affect the 454 

simulated MJO can be used when making choices in an ultimate tuning of a climate 455 

model, when it is necessary to balance the simulation quality of a model across many 456 

diverse metrics. The other way in which the knowledge gained in this study may be 457 

useful is in the encouragement of the development of separate structural changes to 458 

model physics. In light of the results presented here, parameterization developments for 459 

the CAM aimed at increasing the sensitivity of the deep convection scheme through 460 

treatments of mesoscale organization [Mapes and Neale, 2011; Park, 2014] and reducing 461 

the drying tendencies of deep convection parameterizations through alterations to the 462 

treatment of convective-scale microphysics [Song et al., 2012] would seem promising as 463 

means to improve the MJO. 464 

  465 
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Appendix A: Description of selected parameters in 478 

CAM5’s Zhang-McFarlane cumulus parameterization 479 

The production rate of rain water (Rr ) from cloud liquid water in the Zhang-480 

McFarlane cumulus parameterization is given by: 481 

 Rr =C0MuQl  (A1) 482 

where Mu  is the updraft mass flux, C0l  is the autoconversion coefficient, and Ql  is the 483 

cloud liquid water content. Smaller values of C0l  decrease the rate of conversion of cloud 484 

water to rain. In CAM5, C0l  is permitted to have different values over land and ocean and 485 

corresponds to the entries zmconv_c0_lnd and zmconv_c0_ocn in Table 2. 486 

The closure condition assumes that cumulus convection consumes Convective 487 

Available Potential Energy (CAPE) at a certain rate F  per unit updraft mass flux at cloud 488 

base (Mb ). Knowing F , Mb  is calculated as: 489 

 Mb =
CAPE −CAPE0l

τF
 (A2) 490 

where CAPE0l  is the threshold for deep convection and τ  is a prescribed time scale 491 

during which CAPE in excess of CAPE0l is consumed by convection. τ corresponds to 492 

the entry zmconv_tau in Table 2. 493 

The rate of evaporation of precipitation Ek  directly into the grid scale 494 

environment as it falls to the surface is given by: 495 

 Ek = Ke 1− RHk( )Rk1 2  (A3) 496 
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where Rk  is the total rainwater flux in model layer k , RH  is the relative humidity of the 497 

environment, and Ke  is the evaporation efficiency. Ke  corresponds to the entry 498 

zmconv_ke in Table 2. 499 

In the original Zhang-McFarlane scheme, CAPE  is diagnosed by assuming an 500 

undiluted parcel ascent. However, in CAM5, deep convection is assumed to take place 501 

with an entraining air parcel that mixes with the free troposphere proportional to an 502 

assumed constant entrainment rate [Neale et al., 2008; Zhou et al. 2012]. The entrainment 503 

rate corresponds to the entry zmconv_dmpdz in Table 2. 504 

Downdrafts are assumed to start at the mid-tropospheric minimum in saturated 505 

moist static energy and detrain in the sub-cloud layer. The downdraft mass flux is scaled 506 

with the updraft mass-flux where the proportionality factor α  is given by:  507 

 α =
µP

P +Ed

 (A2) 508 

where P is the total precipitation in the convective layer and Ed  is the rain water 509 

evaporation required to maintain the downdraft in a saturated state. This formalism 510 

ensures that the downdraft mass flux vanishes in the absence of precipitation, and that 511 

evaporation cannot exceed some fraction µ of the precipitation. µ corresponds to the entry 512 

zmconv_alfa in Table 2. 513 

  514 
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Appendix B: Sensitivity analysis and Bayesian parameter 515 

estimation  516 

Two stages of analysis were performed on the patCorACIO, patCorACWP and 517 

wePwrRatio metrics calculated from the perturbed-parameter ensemble. First, a 518 

parameter sensitivity analysis was performed to identify the perturbed parameters (also 519 

called input parameters here) that are most responsible for the variance in the MJO 520 

metrics. Second, given observational targets for patCorACIO, patCorACWP and 521 

wePwrRatio, a Bayesian parameter estimation was applied to determine posterior 522 

distributions for those parameters identified in the first stage to be most responsible for 523 

the variance in the metrics. Both stages utilized statistical response surface models that 524 

relate the values of the CAM5 parameters to the MJO metrics. Before fitting these 525 

response surface models, the patCorACIO, patCorACWP and wePwrRatio distributions 526 

were centered to have a mean of 0 and unit standard deviation. For the parameter 527 

sensitivity analysis, 80% of the data was randomly selected for fitting the response 528 

surface models and the remaining 20% used for testing quality of the fits. 529 

In the first stage, the sensitivity analysis was conducted using response surface 530 

models for patCorACIO, patCorACWP and wePwrRatio as a function of the 22 input 531 

parameters. Although other methods including linear basis functions, polynomial chaos 532 

expansions [Lucas et al., 2013], and support vector machines [Bishop, 2007] were tried, 533 

random forests [Breiman, 2001] were selected as they yielded the best fits. Briefly, a 534 

random forest is an ensemble of randomized decision trees. Individual trees in the forest 535 

are generated by bootstrap sampling with replacement of the training data and selecting 536 

random subsets of the input parameters for partitioning the input data space. A variant of 537 
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random forests, called extremely randomized trees [Geurts et al., 2006], was used that 538 

adds a further level of randomization to the partitioning. Random forests are 539 

straightforward to fit and attractive because they make essentially no assumptions about 540 

the relationships in the data. The extra trees implementation contained in the Scikit-learn 541 

package [Pedregosa et al., 2011] was used with all of its default settings except the 542 

number of trees, which was set to 50. From the random forests, parameter sensitivities 543 

with error estimates were derived in terms of feature scores that approximate the fraction 544 

of ensemble variance explained by the parameter variations. Important parameters have 545 

large feature scores and the error estimates are traceable to the variability in the ranks 546 

across trees in the forest. 547 

In the second stage, Bayesian parameter estimation was performed for the five 548 

parameters with the largest feature scores. The goal is to determine the parameter values 549 

that hypothetically would improve the agreement between the simulated and observed 550 

values of patCorACIO, patCorACWP and wePwrRatio. Response surfaces are an 551 

indispensable tool for this analysis because they are used to quickly estimate the values of 552 

the metrics at new, untested values of the input parameters without the need to run 553 

additional CAM5 simulations. To that end, the random forest response surfaces were refit 554 

using only the selected parameters from all ensemble members. Subsequently, Bayes’ 555 

rule (posterior ∝ likelihood×prior) is applied with samples drawn from a prescribed 556 

prior probability distribution over the parameters, and for each sample point the 557 

likelihood of explaining the observations is calculated. The likelihood and prior 558 

distributions are multiplied and normalized to yield a posterior probability distribution 559 

over the parameters. Following the parameter sampling distribution, we use uniform prior 560 
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distribution over the ranges of the selected parameter ranges defined in Table 2, which 561 

simplifies the Bayesian calculations (i.e. the likelihood is multiplied by 1). We draw 106 562 

samples from this prior distribution using Latin Hypercube Sampling, and then evaluate 563 

patCorACIO, the patCorACWP and wePwrRatio using the random forest response 564 

surfaces. The logarithm of the likelihood is computed as log 𝐿 = − 𝑟!"#$%&'$() −565 

𝑡!"#$%&'$()
!+ 𝑟!"#$%&'$() − 𝑡!"#$%&'$()

! + 𝑟!"#!$%&'() − 𝑡!"#!$%&'() ! /2𝛿!, 566 

where 𝑟 and 𝑡 are, respectively, the centered response surface and target (i.e., observed) 567 

values of patCorACIO, patCorACWP and wePwrRatio, and 𝛿! approximates the variance 568 

of the squared differences. The target values are taken as 1.0, 1.0 and 2.18 for 569 

patCorACIO, patCorACWP and wePwrRatio, and 𝛿 is set as 2.5 standard deviations of 570 

the centered distributions. Our focus is on identifying likelihood maxima (i.e. optimal 571 

parameter values) rather than determining the precise shape of the likelihood distribution 572 

(i.e. parameter uncertainties), so the actual value of the 𝛿 used is somewhat arbitrary.   573 
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List of Figures 785 

FIGURE 1. Lag-longitude correlation coefficients of TRMM precipitation averaged from 786 

10°S - 10°N with TRMM precipitation averaged over the (a) the Indian Ocean region 787 

(70°E - 90°E, 5°S - 5°N and (b) for the West Pacific Ocean region (130°E - 150°E, 5°S - 788 

5°N). The TRMM data are band-pass filtered for 20 – 90 days. The correlations are 789 

computed using data from the November to April half of the year. 790 

FIGURE 2. TRMM November to April wavenumber-frequency spectra of 10°N - 10°S 791 

averaged precipitation. The abscissa is for frequency in units of cycles per day with 792 

positive values indicating eastward propagating waves. The ordinate is for zonal 793 

wavenumber. Solid boxes indicate regions for averaging east and west power and 794 

correspond to periods between 20 and 90 days and for wavenumbers 1 – 5. Individual 795 

November to April spectra were calculated for each year, and then averaged over all 796 

years of data. Only the climatological seasonal cycle and time mean were removed before 797 

calculating spectra. 798 

FIGURE 3. Joint histogram across the ensemble of East-West Power Ratio (wePwrRatio) 799 

and lead-lag/longitude pattern correlation (patCorACIO) using (a) GPCP and (b) TRMM 800 

precipitation observations. The number of models within a given region are indicated by 801 

the color shading whose legend is shown to the right of the plot. The star indicates the 802 

values of these metrics for the CAM5 with its default settings. The large black circle at 803 

the top of the plots indicates the value calculated from observations and if matched by a 804 

model would represent a perfect simulation. 805 

FIGURE 4. Parameter importance feature scores estimated by the random forest 806 

technique for patCorACIO, patCorACWP, and wePwrRatio. The score indicates the 807 
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relative importance of a given physical parameter to the variations in the values the MJO 808 

metrics of patCorACIO, patCorACWP, and wePwrRatio. 809 

FIGURE 5. Marginal distributions of parameter likelihood values on the ordinate for five 810 

deep convection parameters using random forest evaluations and observations of 811 

patCorACIO, patCorACWP and wePwrRatio. The abscissa displays the scaled parameter 812 

values between 0 (minimum) and 1 (maximum), and the vertical red lines denote the 813 

default parameter values used in CAM5. These plots can be used to indicate the relative 814 

likelihood of a given parameter value. For example, CAM5 simulations in which 815 

zmconv_c0_ocn is set to its minimum value are much more likely than any other value 816 

including CAM5’s default to lead to simulations which more closely match the observed 817 

values of patCorACIO, patCorACWP and wePwrRatio. 818 

FIGURE 6. As in FIGURE 1a, except with the addition of the lag-longitude correlation 819 

coefficients of 850 hPa zonal wind anomalies (contour lines) in addition to that for the 820 

intra-seasonal precipitation anomalies (color shading). Results are shown for the (a) 821 

observations and the (b) Default, (c) UQ-Rec, and (d) PPE-Best simulations. 822 

Observations are from TRMM for precipitation and ERA-Interim for 850 hPa zonal 823 

wind. 824 

FIGURE 7. As in FIGURE 2, but for the (a) Default, (b) UQ-Rec and (c) PPE-Best 825 

simulations. Note that the color scale of the Default simulation covers only ½ the range 826 

of the UQ-Rec and PPE-Best simulations. 827 

FIGURE 8. Leading multivariate combined EOF of the band-passed OLR, 850-hPa and 828 

200 hPa zonal wind averaged from 15°S to 15°N for November to April for the (a) 829 
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observations and the (b) Default, (c) UQ-Rec and (d) PPE-Best simulations. Observations 830 

are from ERA-Interim for winds and Liebmann and Smith [1996] for OLR. 831 

FIGURE 9. Power-spectral density plots of the leading CEOF (FIGURE 8) projected 832 

onto the unfiltered data with only the seasonal cycle removed for the (a) observations and 833 

the (b) Default, (c) UQ-Rec, and (d) PPE-Best simulations. The 90% and 95% confidence 834 

limits on a red noise spectra are plotted for comparison. 835 

FIGURE 10. Composite November to April band-pass filtered OLR as a function of the 8 836 

phases of the MJO with time progressing downwards. The composite is based on PC12 + 837 

PC22 > 1 for (a) the observations and the (b) Default, (c) UQ-Rec, (d) PPE-Best 838 

simulations. The units on OLR are in W m-2. 839 

FIGURE 11. As in FIGURE 10 but for 850 hPa zonal wind. The units on the zonal wind 840 

are in m sec-1. 841 

FIGURE 12. Longitude-pressure cross-sections of 15°S to 15°N averaged specific 842 

humidity anomalies linearly regressed onto 10°N - 10°S averaged 20 – 90 day band-843 

passed precipitation at 120°E for (a) ERA-Interim and the (b) Default, (c) UQ-Rec, and 844 

(d) PPE-Best simulations. Positive values are indicated by solid contours whereas 845 

negative values are indicated by dashed contours. Shading indicates where anomalies are 846 

significant at the 95% level. 847 

FIGURE 13. As in FIGURE 12, but for diabatic heating.  848 

FIGURE 14. Longitude-pressure cross-sections of water vapor specific humidity 849 

differences in g kg-1 between the ERA-Interim re-analysis and the (a) Default, (b) UQ-850 

Rec, (c) PPE-Best, and (d) OAT38 simulations. Differences are averaged over the months 851 
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of November through April and from 15°N-15°S with positive values indicating that the 852 

simulated specific humidity is larger than that in the re-analysis.  853 
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TABLE 1. Summary of CAM5 parameterizations. 854 

Parameterizations CAM5 Implementation 

Radiation Rapid Radiative Transfer Model - Global [Iacono et 
al., 2008] 

Shallow convection Mass flux scheme with convective inhibition closure 
[Park and Bretherton, 2009] 

Deep convection Bulk mass flux with CAPE closure and an entraining 
plume [Zhang and McFarlane, 1995; Neale et al., 
2008] 

Planetary boundary layer and 
turbulence 

Moist turbulence scheme based on di- agnostic 
turbulent kinetic energy [Bretherton and Park, 2009] 

Cloud microphysics and 
macrophysics 

Prognostic double moment microphysics, [Morrison 
and Gettelman, 2008; Gettelman et al., 2010] and 
diagnostic cloud fraction scheme 

Aerosols Modal aerosol model [Liu et al., 2012] 
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TABLE 2. Parameters varied in the perturbed parameter ensemble.  1 
 2 

Model Variable Variable Description Parameterization Minimum 
Value 

Default 
Value 

Maximum 
Value 

dust_emis_fact Dust emission tuning factor Aerosol 0.21 0.35 0.86 

cldfrc_rhminh Threshold relative humidity 
for high-level clouds 

Large-scale 
cloud 0.65 0.8 0.85 

cldfrc_rhminl Threshold relative humidity 
for low-level clouds 

Large-scale 
cloud 0.8 0.8875 0.99 

cldwatmi_ai Fall speed parameter for 
stratiform cloud ice 

Large-scale 
cloud 350 700 1400 

cldwatmi_as Fall speed parameter for 
stratiform snow 

Large-scale 
cloud 5.86 11.72 23.44 

cldwatmi_cdnl Cloud droplet number limiter Large-scale 
cloud 0 0 1 × 10−6 

cldwatmi_dcs Autoconversion size 
threshold for ice to snow 

Large-scale 
cloud 0.0001 0.0004 0.0005 

cldwatmi_eii Collection efficiency for the 
aggregation of ice 

Large-scale 
cloud 0.001 0.1 1 

cldwatmi_qcvar Inverse relative variance of 
sub-grid scale cloud water 

Large-scale 
cloud 0.5 2 5 

eddydiff_a2l Moist entrainment 
enhancement parameter 

Turbulence 10 30 50 

micropa_wsubimax 
Maximum sub-grid scale 
vertical velocity for ice 

nucleation 

Large-scale 
cloud 0.1 0.2 1 

micropa_wsubmin 
Minimum sub-grid scale 

vertical velocity for liquid 
nucleation 

Large-scale 
cloud 0 0.2 1 

uwschcu_criqc 
Maximum updraft 

condensate in shallow 
convection 

Shallow 
convection 0.0005 0.007 0.0015 

uwschcu_kevp 
Evaporative efficiency of 

shallow convection 
precipitation 

Shallow 
convection 1 × 10−6 2 × 

10−6 2 × 10−5 

uwschcu_rkm Scaling factor for shallow 
convection entrainment rate 

Shallow 
convection 8 14 16 

uwschcu_rpen Penetrative efficiency of 
shallow convection updraft 

Shallow 
convection 1 5 10 

zmconv_alfa Initial deep convection cloud 
downdraft mass flux 

Deep convection 0.05 0.1 0.6 

zmconv_c0_lnd 
Deep convection 

autoconversion coefficient 
over land 

Deep convection 
0.001 0.0059 0.01 

zmconv_c0_ocn 
Deep convection 

autoconversion coefficient 
over ocean 

Deep convection 
0.001 0.045 0.1 

zmconv_dmpdz Fractional mass entrainment 
rate for deep convection 

Deep convection 0.0002 0.001 0.002 

zmconv_ke Evaporation efficiency of 
deep convection precipitation 

Deep convection 5 × 10−7 1 × 
10−6 1 × 10−5 

zmconv_tau Convective adjustment time 
scale for deep convection 

Deep convection 1800 3600 28800 
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TABLE 3. Bias and root-mean-square (RMS) errors calculated over a global domain for 1 
climatological December-January-February averages between observations and various 2 
model configurations. Model simulations are compared to observations of GPCP 3 
precipitation, CERES EBAF shortwave cloud radiative effect (SWCRE), ocean-only 4 
NVAP liquid water path (LWP), and CERES EBAF OLR. 5 

Model GPCP (mm d-1) CERES EBAF 
SWCRE (W m-2) 

NVAP LWP      
(g m-2) 

CERES EBAF 
OLR (W m-2) 

 Bias RMS Bias RMS Bias RMS Bias RMS 
Default 0.301 1.284 -2.76 21.25 -35.32 39.71 -3.95 9.967 
UQ-Rec 0.179 1.314 -20.82 36.17 216.54 355.20 -7.46 13.12 

PPE-Best 0.252 1.501 -27.655 41.089 188.29 303.08 -7.99 13.90 
OAT38 0.225 1.232 -18.629 34.881 181.95 314.64 -7.59 13.32 

 6 
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 1 

FIGURE 1. Lag-longitude correlation coefficients of TRMM precipitation averaged from 2 
10°S - 10°N with TRMM precipitation averaged over the (a) the Indian Ocean region 3 
(70°E - 90°E, 5°S - 5°N and (b) for the West Pacific Ocean region (130°E - 150°E, 5°S - 4 
5°N). The TRMM data are band pass filtered for 20 – 90 days. The correlations are 5 
computed using data from the November to April half of the year. 6 

(a) TRMM Lag Correlation with IO region

(b) TRMM Lag Correlation with WP region

Figure 1. Lag correlations of TRMM precipitation averaged from 10�S to 10�N with TRMM

precipitation averaged over the (a) the Indian Ocean region (70�E - 90�E, 5�S to 5�N and (b)

for the West Pacific Ocean region (130�E - 150�E, 5�S to 5�N. The TRMM data are band pass

filtered (20-90 days). The correlations are computed from the November to April.
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 1 

FIGURE 2. TRMM November to April wavenumber-frequency spectra of 10°N - 10°S 2 
averaged precipitation. The abscissa is for frequency in units of cycles per day with 3 
positive values indicating eastward propagating waves. The ordinate is for zonal 4 
wavenumber. Solid boxes indicate regions for averaging east and west power and 5 
correspond to periods between 20 and 90 days and for wavenumbers 1 – 5. Individual 6 
November to April spectra were calculated for each year, and then averaged over all 7 
years of data. Only the climatological seasonal cycle and time mean were removed before 8 
calculating spectra. 9 

Figure 2. TRMM November to April wavenumber-frequency spectra of 10�N to 10�S averaged

precipitation. Solid boxes indicate regions for averaging east and west power. Individual Novem-

ber to April spectra were calculated for each year, and then averaged over all years of data. Only

the climatological seasonal cycle and time mean were removed before calculating the spectra.

.
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 1 

FIGURE 3. Joint histogram across the ensemble of East-West Power Ratio (wePwrRatio) 2 
and lead-lag/longitude pattern correlation (patCorACIO) using (a) GPCP and (b) TRMM 3 
precipitation observations. The number of models within a given region are indicated by 4 
the color shading whose legend is shown to the right of the plot. The star indicates the 5 
values of these metrics for the CAM5 with its default settings. The large black circle at 6 
the top of the plots indicates the value calculated from observations and if matched by a 7 
model would represent a perfect simulation. 8 

(a) EWPR and PC-IO for OAT ensemble GPCP

(b) EWPR and PC-IO for OAT ensemble TRMM

Figure 4. (a) Histogram of the LHS ensemble EWPR against PC-IO( see text for an expla-

nation of these terms ) (a) using GPCP Observations and (b) using TRMM Observations. Star

indicates the Default CAM5 location. Large black circle indicates the Observed location.
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 1 

FIGURE 4. Parameter importance feature scores estimated by the random forest 2 
technique for patCorACIO, patCorACWP, and wePwrRatio. The score indicates the 3 
relative importance of a given physical parameter to the variations in the values the MJO 4 
metrics of patCorACIO, patCorACWP, and wePwrRatio. 5 
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 1 

FIGURE 5. Marginal distributions of parameter likelihood values on the ordinate for 5 2 
deep convection parameters using random forest evaluations and observations of 3 
patCorACIO, patCorACWP and wePwrRatio. The abscissa displays the scaled parameter 4 
values between 0 (minimum) and 1 (maximum), and the vertical red lines denote the 5 
default parameter values used in CAM5. These plots can be used to indicate the relative 6 
likelihood of a given parameter value. For example, CAM5 simulations in which 7 
zmconv_c0_ocn is set to its minimum value are much more likely than any other value 8 
including CAM5’s default to lead to simulations which more closely match the observed 9 
values of patCorACIO, patCorACWP and wePwrRatio. 10 
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 1 

FIGURE 6. As in FIGURE 1a, except with the addition of the lag-longitude correlation 2 
coefficients of 850 hPa zonal wind anomalies (contour lines) in addition to that for the 3 
intra-seasonal precipitation anomalies (color shading). Results are shown for the (a) 4 
observations and the (b) Default, (c) UQ-Rec, and (d) PPE-Best simulations. 5 
Observations are from TRMM for precipitation and ERA-Interim for 850 hPa zonal 6 
wind. 7 

(a) Obs (b) Default

(c) UQ-rec (d) PPE-Best

Figure 8. November to April lag-longitude plot of 10�S to 10�N averaged intra-seasonal rainfall

anomalies and 850 hPa zonal wind anomalies correlated against intra-seasonal precipitation for

the Indian Ocean region (70�E - 90�E, 5�S to 5�N (a) for the observations, (b) Default, (c) UQ-

REC, (d) PPE-Best model simulations. The filled colors are for rainfall, the contour lines are

for the zonal wind. The observations are TRMM for rainfall and ECMWF Interim for 850 hPa

zonal wind.
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 1 

FIGURE 7. As in FIGURE 2, but for the (a) Default, (b) UQ-Rec and (c) PPE-Best 2 
simulations. Note that the color scale of the Default simulation covers only ½ the range 3 
of the UQ-Rec and PPE-Best simulations. 4 

(a) Default (b) UQ-rec

(c) PPE-Best

Figure 9. Nov-April wavenumber-frequency spectra of 10�N to 10�S averaged precipitation for

(a) Default, (b) UQ-REC and (c) PPE-Best models. Solid boxes indicate regions for averaging

east and west power. Calculated as in Fig. 2
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 1 

FIGURE 8. Leading multivariate combined EOF of the band passed OLR, 850-hPa and 2 
200 hPa zonal wind averaged from 15°S to 15°N for November to April for the (a) 3 
observations and the (b) Default, (c) UQ-Rec and (d) PPE-Best simulations. Observations 4 
are from ERA-Interim for winds and Liebmann and Smith [1996] for OLR. 5 

(a) CEOF 1 Obs (b) CEOF 1 Default

(c) CEOF 1 UQ-rec (d) CEOF 1 PPE-Best

Figure 10. Leading multivariate combined EOF of the band passed OLR, U850 and U200

averaged from 15�S to 15�N for November to April for the (a) observations (b) Default, (c)

UQ-Rec and (d) PPE-Best models. Observations are the ERA-Interim for winds, Liebmann and

Smith [1996] for OLR
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 1 

FIGURE 9. Power-spectral density plots of the leading CEOF (FIGURE 8) projected 2 
onto the unfiltered data with only the seasonal cycle removed for the (a) observations and 3 
the (b) Default, (c) UQ-Rec, and (d) PPE-Best simulations. The 90% and 95% confidence 4 
limits on a red noise spectra are plotted for comparison. 5 

(a) Observations (b) Default

(c) UQ-rec (d) PPE-Best

Figure 13. Power-spectral density plots of the leading CEOF ( Fig. 10) projected onto the

unfiltered data ( only the seasonal cycle removed) for (a) Observations, (b) Default, (c) UQ-Rec,

and (d) PPE-Best models.
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 1 

FIGURE 10. Composite November to April band pass filtered OLR as a function of the 8 2 
phases of the MJO with time progressing downwards. The composite is based on PC12 + 3 
PC22 > 1 for (a) the observations and the (b) Default, (c) UQ-Rec, (d) PPE-Best 4 
simulations. The units on OLR are in W m-2. 5 

(a) Obs (b) Default

(c) UQ-rec (d) PPE-Best

Figure 14. Composite November to April band pass filtered OLR as a function of MJO phase.

The composite is based on PC12 + PC22 > 1 for (a) Obs (b) Default, (c) UQ-Rec, (d) PPE-Best
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 1 

FIGURE 11. As in FIGURE 10 but for 850 hPa zonal wind. The units on the zonal wind 2 
are in m sec-1. 3 

(a) Obs (b) Default

(c) UQ-rec (d) PPE-Best

Figure 15. Composite November to April band pass filtered 850 hPa Zonal wind as a function

of MJO phase. The composite is based on PC12 + PC22 > 1 for (a) Obs (b) Default, (c) UQ-Rec,

(d) PPE-Best
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FIGURE 12. Longitude-pressure cross-sections of 15°S to 15°N averaged specific 2 
humidity anomalies linearly regressed onto 10°N - 10°S averaged 20 – 90 day band-3 
passed precipitation at 120°E for (a) ERA-Interim and the (b) Default, (c) UQ-Rec, and 4 
(d) PPE-Best simulations. Positive values are indicated by solid contours whereas 5 
negative values are indicated by dashed contours. Shading indicates where anomalies are 6 
significant at the 95% level. 7 

(a) RegOnPPT Obs (b) RegOnPPT Default

(c) RegOnPPT UQ-rec (d) RegOnPPT PPE-Best

Figure 18. Longitudinal pressure cross sections of specific humidity from 15�S to 15�N linearly

regressed onto the band pass rainfall at 120�E for (a) Observations, (b) Default, (c) UQ-Rec,

and (d) PPE-Best
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 1 

FIGURE 13. As in FIGURE 12 but for diabatic heating. 2 

(a) RegOnPPT Default (b) RegOnPPT UQ-rec

(c) RegOnPPT PPE-Best

Figure 19. Longitudinal pressure cross sections of diabatic heating of moist processes from

15�S to 15�N linearly regressed onto the band pass rainfall at 120�E for (a) Default, (b) UQ-Rec,

and (c) PPE-Best
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FIGURE 14. Longitude-pressure cross-sections of water vapor specific humidity 2 
differences in g kg-1 between the ERA-Interim re-analysis and the (a) Default, (b) UQ-3 
Rec, (c) PPE-Best, and (d) OAT38 simulations. Differences are averaged over the months 4 
of November through April and from 15°N-15°S with positive values indicating that the 5 
simulated specific humidity is larger than that in the re-analysis. 6 
 7 
 8 

(a) Default (b) UQ-rec

(c) PPE-Best (d) OAT38

Figure 22. Specific humidity di�erence from ECMWF Interim for November to April averaged

from 15N-15S for (a) Default, (b) UQ-Rec, (c) PPE-Best, (d) OAT38
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